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Abstract. We further explore the generalization Okumura [2] has given of
Tamura’s problem to the general arbelos, resulting in the Tamura twins. We
connect these twins to the famous Archimedean twins. While Okumura found a
third circle congruent to the Tamura twins, we present four more of these, calling
them Tamura circles.
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1. Introduction

One of the arbelos problems in Wasan geometry, Tamura’s problem, was described
by Hiroshi Okumura in [2]. It presents a symmetric arbelos on segment AB with
smaller semicircles α and β and larger semicircle γ and a line h perpendicular to
AB. The problem now states that if the circle tangent h and to α and β externally
and the incircle of the curvilinear triangle formed by β, γ and h are congruent,
then their radius is 1

10
of the base segment. See Figure 1.

Okumura [2] generalized Tamura’s problem to the general arbelos. If the arbelos
radii are given as a of α, b of β, and c = a+ b of γ, then Okumura found that the
radii of the congruent circles defined as in Tamura’s problem, which we will call
Tamura twins, are

(1)
abc

a2 + c2
.
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Figure 1. Tamura’s problem

In addition Okumura found a third circle congruent to the Tamura twins, with
the points G and K where h meets β and AB respectively as endpoints of its
diameter. We will call circles as congruent to the Tamura twins Tamura circles.

We present an alternative way to identifiy the Tamura twins and present a proof
that connects these circles directly to the famous Archimedean twins. After having
done so we present a few more Tamura circles.

2. The Tamura twins

In private communication between the authors, the first author proposed the
following theorem, for which we will later show that the theorem is about the
Tamura twins. The theorem appears to have been published in 1949 by Gertrude
Welch [4].

Theorem 2.1. We have an arbelos on segment AB with smaller semicircles α =
(AO) = Mα(a), β = (OB) = Mβ(b) and larger semicircle γ = (AB) = Mγ(c),
hence c = a + b. We construct a fourth semicircle δ = (AMβ). The circles ε1
tangent externally to α and β and internally to δ and ε2 tangent externally to β
and δ and internally to γ are congruent. See Figure 2.

Figure 2. Ekrutt’s theorem
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Figure 3. The smaller arbelos through inversion I

Proof. Consider inversion I with inversion circle β. Together with β the images
α′ of α and γ′ of γ form a smaller arbelos. The image δ′ of δ is the common
tangent of α′ and γ′ perpendicular to AB. Hence the images ε′1 and ε′2 of ε1
and ε2 respectively are exactly the twin circles of Archimedes with respect to this
smaller arbelos. It is well known that they are congruent and as they are equally
distant from the inversion center Mβ, so are their originals ε1 and ε2. See Figure
3. □

To establish the radii of ε1 and ε2 we start to calculate the radii a′ of α′ and b′

of γ′ respectively, the radii of the smaller arbelos’ semicircles. Using I we have
MβA ·MβA

′ = b2 and we find MβA
′ = b2

a+c
and

a′ =
1

2
OA′ =

ab

a+ c
,

b′ = b− a′ =
bc

a+ c
.

Using the well-known formula for the radius of Archimedean circles we find that
the radius r′ of ε′1 and ε′2 is given by

r′ =
a′b′

a′ + b′
=

a′b′

b
=

abc

(a+ c)2
.

We finally use I to establish the radius r of ε1 and ε2 by

(b− 2r′)(b+ 2r) = b2.

This indeed yields

(2) r =
abc

a2 + c2
.

Note that the radii of ε1 and ε2 can be calculated without inversion as well. Kousik
Sett [3] used for instance Stewart’s theorem.

We see that (2) is equal to the radius (1) Okumura found for the Tamura twins.
Also, ε1 is tangent to α and β externally and ε2 is tangent to β externally and
γ internally, just as the Tamura twins. This means that ε1 and ε2 are indeed
the same circles as the Tamura twins, and hence that ε1 and ε2 have a common
tangent h, perpendicular to AB at a point K.
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Figure 4. Circle h′

Note that the existence of h can also be proven by calculation, see for instance
Kousik Sett’s proof [3].

Applying I to h, we find a circle h′. With respect to the smaller arbelos this circle
is tangent to both Archimedean twins, one internally and one externally, has its
center on AB, intersecting it at the center of the greater semicircle of this arbelos.
The existence of this circle in the arbelos seems not to be well known. See Figure
4.

To further study h′ we consider circle Γ with the same properties in the general
arbelos. Without losing generality we assume a < b (for a = b the circle degen-
erates to the common tangent of α and β perpendicular to AB). Γ is tangent to
the Archimedean twins, the a-circle internally and the b-circle externally, has its
center on AB, and passes through Mγ. We introduce Cartesian coordinates with
O(0, 0), A(−2a, 0) and B(2b, 0). The radius of the Archimedean twins is known
as (see [1])

rA =
ab

c
.

The centers of the Archimedean twins are Aa(−rA, 2
√
arA) and Ab(rA, 2

√
brA).

Now Γ is given by

Γ :

(
x− a2 − 4ab+ b2

2(b− a)

)2

+ y2 =

(
a2 + b2

2(b− a)

)2

,

hence has midpoint

MΓ

(
a2 − 4ab+ b2

2(b− a)
, 0

)
.

It is readily checked that indeed

d(Aa,MΓ) =
a2 + b2

2(b− a)
− rA

and

d(Ab,MΓ) =
a2 + b2

2(b− a)
+ rA

and that Mγ(b− a, 0) lies on Γ.
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Figure 5. Γ and the Archimedean twins in the general arbelos

Interestingly Γ intersects AB (produced) in P ( 2ab
a−b

, 0) as well, the external center
of similitude of α and β. See Figure 5.

Going back to the smaller arbelos and h′, this means that the common t tangent
to α′ and γ′ apart from δ′ has as image by I a circle ζ that passes through K and
Mβ and tangent to α and γ.

This opens the way to a fourth Tamura circle, as the largest circle enclosed by t
and β is the well-known Archimedean Bankoff quadruplet circle [1]. As tangent to
β internally its image by I is a Tamura circle ε4, the largest circle enclosed by β
and ζ, while tangent to β externally. Its point of tangency to β is the point where
β meets its tangent u from A and δ and it passes through Q, the point where ζ
and h intersect. See Figure 6.

Figure 6. The fourth Tamura circle ε4
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Figure 7. The fifth Tamura circle ε5

3. Are Tamura circles ubiquitous?

Okumura [2] found a third Tamura circle, which we will refer to as ε3, above we
presented a fourth one. It may be more in the spirit of modern computer age -
with many mathematical online encyclopedias and catalogues - than in the spirit
of Wasan geometry to look for more of those. Nevertheless in this final section
we will present a few ones that we found, presenting them to leave details to the
reader.

The fifth Tamura circle ε5 is the reflection of ε4 through u and is also tangent to
the line v through K parallel to u. See Figure 7. Note that MβQ passes through
the centers of ε4 and ε5 and is perpendicular to t, u and v.

Now, let semicircle κ = (MβB), let semicircle δ1 be the symmetric of δ with
respect to the perpendicular through Mγ to AB. Then let M6 be the midpoint
of BQ. The Tamura circle ε6 with center M6 is tangent to δ, δ1, ζ, and κ. The
tangent w of ε6 and κ through their point of tangency passes through Mγ and is
parallel to t, u and v.

For the seventh Tamura circle, we first note that one of the endpoints G of the
defining diameter of ε3 lies on the line connecting A with the midpoint R of the arc
(OB). Let S be the midpoint of arc (MβB) and M7 the point where MγS meets
κ apart from S. Then clearly d(M7, AB) = GK

2
= r and M6M7 is perpendicular

Figure 8. The sixth and seventh Tamura circles ε6 and ε7
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to AB. So the Tamura circle ε7 with center M7 is tangent to AB. See Figure 8.
Note that AR ∥ MγS.
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